

US EPA's Science-Based Approach to Understanding and Managing Environmental Risk from PFAS

Andrew J. R. Gillespie, Ph. D.
Associate Director and Executive Lead for PFAS Research and Development
US Environmental Protection Agency

Per- and Polyfluoroalkyl Substances (PFAS)

- · A class of man-made chemicals
 - Chains of carbon (C) atoms surrounded by fluorine (F) atoms, with different endings
 - Complicated chemistry thousands of different variations exist in commerce
 - Widely used in industrial processes and in consumer products
 - Some PFAS are known to be PBT:
 - · Persistent in the environment
 - · Bioaccumulative in organisms
 - Toxic at relatively low (ppt) levels

Recent EPA Actions on PFAS

- National PFAS Leadership Summit May 2018
 - Share information, identify actions, risk communication
- Near Term EPA Actions Announced at Summit
 - Develop groundwater cleanup recommendations for PFOA/PFOS (OLEM)
 - Examine options for listing PFOA/PFOS as Hazardous Substances (OLEM)
 - Release toxicity assessments for GenX and PFBS by fall (OW & ORD)
- Community Events June-Sept 2018
 - Series of 6 public meetings on PFAS concerns
- EPA PFAS Action Plan February 14 2019
 - Building on lessons learned from Summit, Engagements, Docket

EPA's PFAS Action Plan Purpose

- Provides EPA's first multi-media, multi-program, national research, management and risk communication plan to address a challenge like PFAS.
- Responds to the extensive public input the agency has received over the past year during the PFAS National Leadership Summit, multiple community engagements, and through the public docket.
- As a result of this unprecedented outreach, the Action Plan provides the necessary tools to assist states, tribes, and communities in addressing PFAS.

EPA PFAS Action Plan

- **Drinking Water** Intends to establish a Maximum Contaminant Level (MCL) for PFOA and PFOS and is moving forward with the regulatory process; propose PFAS in next round of unregulated contaminant monitoring (UCMR5)
- Cleanup Initiating the regulatory process for designating PFOA and PFAS as Hazardous Substances, set interim groundwater cleanup recommendation
- Toxics Consider including PFAS in Toxics Release Inventory (TRI), initiate proposal to prohibit the uses of certain PFAS chemicals through the TSCA new chemicals program
- Research Rapidly expand scientific foundation for understanding and managing PFAS risk
- **Enforcement** Use enforcement tools, where appropriate, to address PFAS exposures in the environment and assist states in enforcement activities
- Risk Communications Work with partners to develop a risk communication toolbox to support federal, state, tribal, and local partners for communicating with their constituents

EPA PFAS Action Plan - Drinking Water

- The EPA intends to establish a Maximum Contaminant Level (MCL) for PFOA and PFOS—two of the most well-known and prevalent PFAS and is moving forward with the regulatory process.
- The Agency is also gathering and evaluating information to determine if regulation is appropriate for other chemicals in the PFAS family.
- The EPA is committed to following the Safe Drinking Water Act process for evaluating and establishing drinking water standards for PFAS chemicals.

EPA PFAS Action Plan - Cleanup

- The EPA will facilitate cleanup efforts by providing groundwater cleanup recommendations.
- The EPA is initiating the regulatory development process for listing certain PFAS as hazardous substances.

EPA PFAS Action Plan - Monitoring

 The EPA will propose nationwide drinking water monitoring for PFAS under the next Unregulated Contaminant Monitoring Rule (UCMR5) monitoring cycle.

EPA PFAS Action Plan - Toxics

- The EPA is considering the addition of PFAS chemicals to the Toxics Release Inventory (TRI)
- EPA is issuing a supplemental proposal to guard against the unreviewed reintroduction and new use, through domestic production or import, of certain PFAS chemicals in the United States.

EPA PFAS Action Plan

Enforcement

• The EPA uses enforcement tools, when appropriate, to address PFAS exposure in the environment and assist states in enforcement activities.

Risk Communications

• The EPA will work collaboratively to develop a risk communication toolbox that includes multi-media materials and messaging for federal, state, tribal, and local partners to use with the public.

EPA PFAS Action Plan Next Steps

- To implement the plan, the EPA will continue to work in close coordination with multiple entities, including other federal agencies, states, tribes, local governments, water utilities, industry, and the public.
- The EPA will provide updates on actions outlined in the plan on the Agency's website.

PFAS Action Plan - Research

- The EPA is rapidly expanding the scientific foundation for understanding and managing risk from PFAS.
- This research is organized around understanding **toxicity**, understanding **exposure**, assessing **risk**, and identifying effective **treatment and remediation** actions.

Research: Human Health Toxicity

> Problem: Lack of human toxicity information for many PFAS of interest

>Action:

- Initial literature search of published toxicity data for 31 PFAS of interest
- · Conduct assessments, fill gaps through high throughput testing

> Results:

- Draft toxicity assessments available for HFPO-DA and PFBS
- Draft IRIS assessment underway for PFBA, PFHxS, PFHxA, PFNA and PFDA
- High throughput assays underway for 150 PFAS representative of chemical space to support prioritization, read across, relative toxicity assessment
- ➤ Impact: Stakeholders will have PFAS toxicity information to inform risk management decisions and risk communication

Research: Ecological Toxicity

➤ **Problem**: Lack of ecological toxicity information for PFAS of concern

> Action:

- Systematic review of literature, assembled in the ECOTOX database
- Developing research plan including topics such as identification of sensitive taxa, bioaccumulation, benchmarks, and thresholds
- Use Adverse Outcome Pathways (AOP) as organizational framework

Results:

- Ecotoxicity data for ~60 PFAS obtained and collated in public ECOTOX system
- Research getting underway
- ➤ Impact: Stakeholders will have PFAS ecotoxicity information to support risk management decisions and risk communication

Research: Analytical Methods

➤ Problem: Lack of standardized/validated analytical methods for measuring PFAS

➤ Action: Develop and validate analytical methods for detecting, quantifying PFAS in water, air, and solids

➤ Results:

- Updated analytical Method 537.1 for drinking water which includes 4 additional PFAS (18 total, including HFPO-DA and ADONA)
- Developing and testing Direct Injection and Isotope Dilution methods for 24 PFAS in surface water, ground water, and solids
- Developing methods for air emission sampling and analysis
- Continued development of HR mass spec methods to discover unknown PFAS
- ➤ Impact: Stakeholders will have reliable analytical methods to test for known and new PFAS in water, solids, and air

#Remited **& IREM**IEC

Research: Exposure

- ➤ **Problem**: Lack of knowledge on sources, site-specific concentrations, fate and transport, bioaccumulation, and human and ecological exposure
- ➤ Action: Develop and test methods, models, and databases to characterize PFAS sources and exposures

≻Results:

- Developing exposure models for identifying, quantifying PFAS fate and transport pathways, relative source attribution, and exposures
- Developing and evaluating sampling and site characterization approaches to identify sources and extent of contamination.
- ➤ Impact: Stakeholders will be able to identify and assess potential PFAS sources and exposures, and identify key exposure pathways for risk management

Research: Drinking Water Treatment

➤ Problem: Lack of water treatment technology performance and cost data for PFAS removal

> Action:

- Review PFAS performance data from available sources (industry, DoD, academia, international)
- Test commercially available granular activated carbons (GACs) and ion exchange (IX) resins for effectiveness over a range of PFAS under different water quality conditions
- Evaluate a range of system sizes large full-scale utility options to home treatment systems

> Results:

- EPA's Drinking Water Treatability Database updated for 9 additional PFAS, including HFPO-DA
- Use state-of-the-science models to extrapolate existing treatment studies to other conditions
- ➤ Impact: Utilities will be able to identify cost effective treatment strategies for removing PFAS from drinking water

 #RemTEC ★ REMTEC

Research: Contaminated Site Remediation

➤ **Problem**: PFAS-contaminated sites require remediation and clean up to protect human health and the environment

≻Action:

- Characterize sources of PFAS such as fire training and emergency response sites, manufacturing facilities, production facilities, disposal sites
 - No complete inventory of sources, locations PFAS very widely used
 - Different sources => different mixtures of PFAS + other contaminants
 - Need to understand precursors, potential transformations, transport in order to plan for remediation

Research: Contaminated Site Remediation

➤ Action:

- Evaluate treatment technologies for remediating PFAS-impacted soils, waters, and sediments
 - Many possible strategies In-place stabilization, treatment and removal
 - · Need to consider ultimate disposal
 - Promise of new technologies thermal, chemical, physical, electrical, biological
- Generate performance and cost data with collaborators to develop models and provide tools to determine optimal treatment choices
- ➤ Results: Tools, data and guidance regarding cost, efficacy, and implementation for remedy selection and performance monitoring
- ➤ Impact: Responsible officials will know how to reduce risk of PFAS exposure and effects at contaminated sites, and to repurpose sites for beneficial use

Research: Materials Management

➤ Problem: Lack of knowledge regarding end-of-life management (e.g. landfills, incineration) of PFAS-containing consumer and industrial products

>Action:

- Characterize end-of-life disposal streams (e.g. municipal, industrial, manufacturing, landfills, incinerators, recycled waste streams) contributing PFAS to the environment
- Evaluate efficacy of waste management technologies (e.g. landfilling, thermal treatment, composting, stabilization) to manage PFAS at end-of-life disposal
- Evaluate performance and cost data with collaborators to manage these materials and manage PFAS releases to the environment
- ➤ Results: Provide technologies, data and tools to manage end-of-life streams
- ➤ Impact: Responsible officials will be able to manage effectively end-of-life disposal of PFAS-containing products

Technical Assistance for States, Tribes and Communities

▶ Problem: State, tribes and communities often lack capabilities for managing PFAS risk

>Action:

- Make EPA technical staff available to consult on PFAS issues
- · Utilize applied research while also providing technical support to site managers
- Summarize and share lessons learned from technical support activities
- > Results: Many examples of past and ongoing technical assistance
 - Cape Fear River, NC Significant reductions in PFAS in source and finished water
 - · Manchester, NH Collaboration on air and water sampling
 - Oscoda, MI Advice on foam sampling and dermal exposure risk on a recreational lake

➤ Impact: Enable states, tribes and communities to 'take action on PFAS'

Research Collaboration

PFAS is a topic of interest to many different organizations, and EPA is committed to leveraging partnerships and collaborations to achieve results. Some examples:

- Collaborating with the National Toxicology Program (NTP) on high throughput toxicology testing
- Collaborating with DOD on analytical method development, treatment/remediation approaches, and participation in the Strategic Environmental Research and Development Program (SERDP)
- Collaborating with individual states and public utilities in testing and applying PFAS measurement and treatment methods
- Collaborating with the academic community via EPA's Science to Achieve Results
 (STAR) competitive grant program

For More Information

Andrew Gillespie, Ph. D.

Associate Director,
National Exposure Research Laboratory
ORD Executive Lead for PFAS R&D
US EPA Office of Research and Development

gillespie.andrew@epa.gov (919) 541-3655

The views expressed in this presentation are those of the individual author and do not necessarily reflect the views and policies of the US EPA

